Forklift Starter

Forklift Starters - The starter motor nowadays is normally either a series-parallel wound direct current electric motor that includes a starter solenoid, which is similar to a relay mounted on it, or it can be a permanent-magnet composition. Once current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion which is positioned on the driveshaft and meshes the pinion using the starter ring gear which is found on the flywheel of the engine.

The solenoid closes the high-current contacts for the starter motor, which begins to turn. Once the engine starts, the key operated switch is opened and a spring inside the solenoid assembly pulls the pinion gear away from the ring gear. This action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by an overrunning clutch. This allows the pinion to transmit drive in just one direction. Drive is transmitted in this way through the pinion to the flywheel ring gear. The pinion continuous to be engaged, like for instance in view of the fact that the operator did not release the key when the engine starts or if there is a short and the solenoid remains engaged. This causes the pinion to spin separately of its driveshaft.

This aforementioned action stops the engine from driving the starter. This is actually an essential step because this particular kind of back drive would enable the starter to spin really fast that it can fly apart. Unless modifications were made, the sprag clutch arrangement would stop using the starter as a generator if it was used in the hybrid scheme mentioned earlier. Typically an average starter motor is designed for intermittent use which would stop it being utilized as a generator.

The electrical parts are made to function for more or less 30 seconds to be able to avoid overheating. Overheating is caused by a slow dissipation of heat is due to ohmic losses. The electrical components are intended to save cost and weight. This is the reason the majority of owner's instruction manuals used for automobiles recommend the driver to stop for at least 10 seconds after each ten or fifteen seconds of cranking the engine, whenever trying to start an engine that does not turn over instantly.

In the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Previous to that time, a Bendix drive was utilized. The Bendix system operates by placing the starter drive pinion on a helically cut driveshaft. Once the starter motor starts spinning, the inertia of the drive pinion assembly enables it to ride forward on the helix, thus engaging with the ring gear. Once the engine starts, the backdrive caused from the ring gear enables the pinion to go beyond the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

During the 1930s, an intermediate development between the Bendix drive was developed. The overrunning-clutch design which was made and introduced during the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive consists of a latching mechanism together with a set of flyweights inside the body of the drive unit. This was better because the average Bendix drive used to be able to disengage from the ring once the engine fired, although it did not stay functioning.

The drive unit if force forward by inertia on the helical shaft once the starter motor is engaged and starts turning. Then the starter motor becomes latched into the engaged position. As soon as the drive unit is spun at a speed higher than what is attained by the starter motor itself, for example it is backdriven by the running engine, and after that the flyweights pull outward in a radial manner. This releases the latch and allows the overdriven drive unit to become spun out of engagement, hence unwanted starter disengagement could be avoided before a successful engine start.